

Global Aerosol System V1.0.0 NEMS-GFS Aerosol Component (NGAC)

Sarah Lu

Global Climate and Weather Modeling Branch NOAA/NCEP/EMC Camp Springs, MD

Team efforts toward building global (NCEP) aerosol forecast capability at NCEP

Mark Iredell (NEMS team lead) Sarah Lu (aerosol modeling) Shrinivas Moorthi (physics) Yu-Tai Hou (radiation-aerosol) Henry Juang (dynamics) Jun Wang (I/O and ESMF infrstructure) Hui-Ya Chuang (post) Weiyu Yang (ESMF infrastructure) Perry Shafran, Fanglin Yang (verification) Eugene Mirvis (DTC support) Nicole McKee (documentation/web) Ho-Chun Huang (aerosol data assimilation) Jeff McQueen (coupling with regional AQ) Youhua Tang (coupling with regional AQ)

Collaborators

Xu Li (SST-aerosols)

GSFC (Arlindo da Silva and Mian Chin) for aerosol modeling **NESDIS (Shobha Kondragunta and Xiaoyang Zhang) for biomass emissions** ECMWF (Angela Benedetti and Jean-Jacques Morcrette) for volcanic ash capability NRL (Jeff Reid, Walter Sessions) for model inter comparison

NEMS GFS Aerosol Component

- NCEP Annual Operating Plan milestone for Q2 FY12
- NGAC will be the first global in-line aerosol forecast system at NCEP
- NGAC will be the first global NEMS implementation at NCEP and the second NEMS implementation
- This global system provides 120-hr dust forecast daily
- New daily aerosol products in grib2 format will be produced

NEMS GFS Aerosol Component

- Forecast model
 - Global Forecast System (GFS) based on NOAA
 Environmental Modeling System (NEMS), NEMS-GFS
 - A common modeling framework using Earth System Modeling Framework (ESMF)
- Aerosol model
 - NASA Goddard Chemistry Aerosol Radiation and Transport Model (GOCART)
 - Simulate atmospheric aerosols including dust, sulfate, black carbon (BC), organic carbon (OC), and sea salt.

From Mark Iredell & Tom Black presentation (2010 AMS/NWP conf.)

Goddard Chemistry Aerosol Radiation and Transport Model (GOCART)

GOCART Implementation

The full-aerosol package has been implemented in NEMS GFS.

NGAC/parm/Chem_Registry.rc is the resource file to specify what constituents to be included in the simulations:

doing_DU: yes # &YesNo Include mineral dust?

doing_SS: no # &YesNo Include sea salt?

doing_SU: no # &YesNo Include sulfates?

doing_BC: no # &YesNo Include black carbon?

doing_OC: no # &YesNo Include organic carbon?

Phased Implementation

Phase I: Global dust forecasts

Phase 2: Global forecasts for dust, sea salt, sulfate, and

carbonaceous aerosols

Phase 3: Global aerosol analysis

Only phase 1 implementation will be discussed in this CCB meeting

NEMS GFS Aerosol Component

- Expected Benefits
 - Provide global short-range aerosol forecasts
 - Provide dynamic aerosol lateral boundary conditions to the National Air Quality Forecast Capability (NAQFC)
 - Include aerosol effects in medium range weather forecasts
 - Produce aerosol information needed for various applications (satellite retrievals, CPC-EPA UV index forecasts etc)

Near-Real-Time NGAC configuration

- EMC parallel on NCEP's CCS (dev)
- 5-day dust forecast once per day (at 00Z)
- Resolution: T126 L64
- Initialization: Aerosols from previous day forecast and meteorology from operational GDAS
- Products: 3d distribution of dust aerosols (5 bins from 0.1 – 10 μm) and 2d aerosol diagnosis fields (e.g., aerosol optical depth)
- Automatic output archive, post processing and web update since June 11, 2011

2011080800 00hr Fcst prz Column AOD at 550nm

Web page for NRT NGAC dust forecasts

http://www.emc.ncep.noaa.gov/gmb/sarah/NGAC/html/realtime.fcst.html

New web page for NRT NGAC dust forecasts

Test Plan

- Near-real-time testing (prz)
 - EMC parallel since June 2011
 - Source code from the NEMS code repository R13341
- Prediction model testing
 - Retrospective test for summer 2010
 - Year-long free forecasts for 2010
 - Issues identified in the NRT package (R13341) and changes are made in late Nov 2011 (R16499)
 - Additional near-real-time testing (prx, pry, prw)

Test Plan (cont'd)

- 4 parallel runs: prz, prx, pry, prw
 - The prz run is based on R13341
 - Dust forecast could be unstable (sedimentation)
 - RAS scheme is modified to eliminate unrealistic thin clouds
 - The prx, pry, prw are based on R16499
 - Long lifetime (~ 11 days) and very weak wet removal in the prx run indicates the convective scavenging in RAS (from GSFC) has not been implemented correctly
 - Code is modified to have both large-scale and convective scavenging done in GOCART (pry and prw)
 - Communication with GSFC early Jan, 2012 confirms the problem in tracer scavenging (the prx run).

NGAC Evaluation and Verification

FC-OBS Bias. Model (salu) AOT at 550nm against L1.5 Aeronet AOT at 500nm. Mean=-0.175. Period=00Z-00Z 01-30 Jul 2010. FC start hrs=0. FCRS=T+6->24 by 6.

Comparison of model (salu) and MODIS AOT at 550nm and L1.5 Aeronet AOT at 500nm over Key_Biscayne (25.73°N, 80.16°W). Model: 00UT, 1-30 Jul 2010, T+6 to T+24.

Comparison of model (salu) and MODIS AOT at 550nm and L1.5 Aeronet AOT at 500nm over Izana (28.31°N, 16.5°W). Model: 00UT, 1-30 Jul 2010, T+6 to T+24.

Coutersy of Luke Jones of ECMWF

We thank Philippe Goloub and Kenneth Voss for the efforts in establishing and maintaining Izana and Key Biscayne site, respectively

NGAC Evaluation and Verification

Dust AOD for 24-hr forecast valid 2011-07-21 00Z

Modeled dust AOD, 120-hr forecast, initialized from 2011-07-20 00Z

- International Cooperative for Aerosol Prediction (ICAP): Collaborations among NCEP, NRL, GSFC, ECMWF, and JMA
- Walter Sessions (NRL) fetches NGAC AOD from EMC ftp site daily for ICAP model comparison

OHVG

NGAC Evaluation and Verification

Perry Shafran (EMC) extends EMC Forecast Verification System (FVS) to verify NGAC dust AOD over CONUS and the African domain.

NGAC Evaluation and Verification

MODIS total AOD from bufr dump

GrADS: COLA/KES

NGAC dust AOD

605

120W

eáw

θÓΕ

NGAC Evaluation and Verification

0.1

0.05

BHADS: COLA/KES

0.2

0.4

0.6

8.0

1.2

1.6

2

3

NGAC Parallel Run Setup

Single nodes for all three jobs

FCST: Forecast for PDY

22 min (20.7 min for fcst)

120-hour NGAC forecast 03Z 06Z 09Z 12Z 18Z 21Z 00Z 03Z 00ZOnce per day, at 00Z Output every 3-hr: History files (sig, sfc); Diagnosis files (flx, aer)

POST: Post-process for PDY

8-min to process 41 FH

sig, flx, and aer ncep_post + copygb a2d, a3d

NGAC Parallel Run Setup

Single nodes for all three jobs

1:10 min

FCST with Quilting: Forecast for PDY

25 min (23.5 min for fcst)

120-hour NGAC forecast 03Z 06Z 09Z 12Z 18Z 21Z 00Z 03Z 00ZOnce per day, at 00Z Output every 3-hr: History files (sig, sfc); Diagnosis files (flx, aer); Post files (NGAC2d, NGAC3d)

POST: Post-process for PDY

2-min to process 41 FH

NGAC2d, NGAC3d a2d, a3d copygb

- AOD at 0.34, 0.44, 0.55, 0.66, 0.86, 1.63, and 11.1 micron
- Dust emission, sedimentation, dry deposition, and wet
 deposition fluxes
 ← Budget, ocean productivity
- Dust PM2.5 and PM10 surface mass concentration ← AQ
- Dust PM2.5 and PM10 column mass density ← budget
- a3d files
 - Sfc pressures
 - − (Pressure, relative humidity, air density, dust mixing ratios) at model levels
 ← Satellite retrievals

Downstream Dependencies

- No downstream dependencies
- The coupling to NAM-CMAQ has been built
- The CMAQ para test run (with GSI and NGAC LBCs) since Dec 27,
 2011 by Youhua Tang

NCEP Testing Page for Air Quality Prediction. NOAA/NWS/NCEP/EMC

http://www.emc.ncep.noaa.gov/mmb/ytang/html-test/html/2012-dustg.html

Current Status

- NEMS regression test completed
- EMC SMS based parallel since Dec 22, 2011
- Grib2 definition resolved on Jan 26, 2012
 - Use Product Definition Template 4.48 for NGAC products
 - PDT 4.48 allows us to specify parameter, aerosol type, size bin, and wavelength
 - PDT 4.48 is undergoing validating testing, so we will provide this template to the NGAC users until PDT 4.48 becomes operational
- Post code merging (GSD branch and NGAC branch) in progress
- NCEP post with grib2 output in progress

Resource requirements

- CPU:
 - single node for all three jobs (prep, fcst, post)
 - approximately 30 min for prep-fcst-post
- Disk:
 - ICs in Gaussian grids
 - Output files in Gaussian grids
 - Post files in 1 deg x 1 deg
- Retention in com:
- HPSS runhistory

- 80 MB
- 3.6 GB
- 2.5 GB in grib1
- ~ 1.5 GB in grib2
 - 5-day
 - ~ 5 GB

Implementation Planning

- Product generation requirements
 - New products in grib2 will be created
 - Data dissemination via FTP (operational) and EMC website (non-operational)
- Libraries:
 - Requires ESMF, NEMSIO and W3LIB
 - Requires XMLparse for grib2
- Risk:
 - No risk to any current NCEP products
- Data Flow:
 - Streaming of AERONET data files onto dcom for verification use

NGAC Implementation Check List

The NGAC package includes 9 RFCs

1.	NGAC_PREP (1 RFC) — scripts and replay/chgres source codes	Lu
2.	NGAC_FCST (1 RFC) – scripts, fcst source code, fix and parm files	Lu
3.	NGAC_POST (1 RFC) – scripts	Lu
4.	ESMF v3.1.0_rp2 (1 RFC) – add header file directory	Lu
5.	$W3_v2.2.3$ (1 RFC) – add one routine needed for the quilting	Wang
6.	NEMSIO_v2 (1 RFC)	Wang
7.	XMLparse (1 RFC) – new lib; update g2tmpl	Wang
8.	NCEP_POST (1 RFC)	Chuang
9.	NGAC_VRFY (1 RFC)	Shafran

Plan Schedule

- Concluded schedule
 - Project kick off meeting Dec 12, 2011
 - GOCART Pre-Implementation Meeting Jan 11, 2012
- Remaining schedule
 - EMC CCB meeting Jan 31, 2012
 - End-to-end test with grib2 output
 - Submit RFCs Feb 16, 2012
 - Submit TIN Feb 10, 2012
 - NCO parallel
 - Implementation

THANK YOU